Handout

Redox Titration

• Part 1: To determine the percentage of H₂O₂ in aqueous solution

• Part 2: To determine the percentage of ascorbic acid in vitamin C

Principles

Concept of redox reaction

take 5e-, oxidizer

Procedures For Part 1

• Rinse the buret with KMnO₄, 5 ml each time, three times

• Fill the buret with 0.02M KMnO₄, record the initial volume in ml

Mass of empty flask ____g

Procedure (Con.)

• Mass of flask + 20-22 drops H_2O_2 __g

• Add 75 ml H₂O and 10 ml 6 M H₂SO₄ into the flask

• Titrate the H₂O₂ solution with KMnO₄ with constant swirling.

Procedure (Con.)

- Endpoint- the pink color persist for at least 30 seconds, record the final volume in ml
- Repeat two more times

Procedures for Part 2

- Rinse the buret with I₂ solution 3 times, 5 ml each time.
- Fill the buret with $0.05M I_2$ solution record the initial volume in ml
- Mass of weighing paper _____g
- Pulverize half vitamin C tablet.
- Mass of weighing paper + sample__g

Procedure (Con.)

Pour the sample into the flask

• Add 75 ml H₂O and 5 ml starch indicator

• Titrate with I₂ solution until the dark blue color persist for 30 or more seconds, record the final volume in ml

Repeat two more times

Reminders

- Read the volume from the top of the meniscus
- No indicator is needed for part 1
- Put white piece of paper under the flask.
- Swirl the flask when you do the titration
- Put any unused solutions in waste container on side shelf

Calculations for Part 1

$$2MnO_4^-+5H_2O_2+2H^+\rightarrow 2Mn^{2+}+5O_2+8H_2O_2$$

- moles of MnO₄ = $\frac{\text{molarity}(0.02\text{M}) \times \text{volume}(\text{ml})}{1000(\text{mL/L})}$
- moles of H_2O_2 = moles of MnO_4 x <u>5</u>

Calculation(Con.)

• gram of H_2O_2 = moles of H_2O_2 x 34.01 (MW of H_2O_2)

- % H₂O₂ = gram of H₂O₂ x 100% sample mass
- sample mass (gram) = weight of (flask + 20-22 drops of H_2O_2) weight of flask

Calculations for Part 2

• $C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$

- moles of I_2 = molarity (0.05M) x volume(mL) 1000(mL/L)
- moles of $C_6H_8O_6$ = moles of I_2

• grams of $C_6H_8O_6 = \text{moles of } C_6H_8O_6 \times 176.13$ (MW of $C_6H_8O_6$)

Calculation(Con.)

• $%C_6H_8O_6 = grams of C_6H_8O_6 \times 100\%$ weight of sample

- weight of sample (gram)
 - = $W_{sample+weighing\ paper}$ $W_{weighing\ paper}$