Handout

Redox Titration

- Part 1: To determine the percentage of $\mathrm{H}_{2} \mathrm{O}_{2}$ in aqueous solution
- Part 2: To determine the percentage of ascorbic acid in vitamin C

Principles

Concept of redox reaction

take $5 \mathrm{e}^{-}$, oxidizer

Procedures For Part 1

- Rinse the buret with $\mathrm{KMnO}_{4}, 5 \mathrm{ml}$ each time, three times
- Fill the buret with $0.02 \mathrm{M} \mathrm{KMnO}_{4}$, record the initial volume in ml
- Mass of empty flask \qquad

Procedure (Con.)

- Mass of flask + 20-22 drops $\mathrm{H}_{2} \mathrm{O}_{2} \ldots \mathrm{~g}$
- Add $75 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and $10 \mathrm{ml} 6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ into the flask
- Titrate the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution with KMnO_{4} with constant swirling.

Procedure (Con.)

- Endpoint- the pink color persist for at least 30 seconds, record the final volume in ml
- Repeat two more times

Procedures for Part 2

- Rinse the buret with I_{2} solution 3 times, 5 ml each time.
- Fill the buret with $0.05 \mathrm{M} \mathrm{I}_{2}$ solution record the initial volume in ml
- Mass of weighing paper \qquad
- Pulverize half vitamin C tablet.
- Mass of weighing paper + sample

Procedure (Con.)

- Pour the sample into the flask
- Add $75 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and 5 ml starch indicator
- Titrate with I_{2} solution until the dark blue color persist for 30 or more seconds, record the final volume in ml
- Repeat two more times

Reminders

- Read the volume from the top of the meniscus
- No indicator is needed for part 1
- Put white piece of paper under the flask.
- Swirl the flask when you do the titration
- Put any unused solutions in waste container on side shelf

Calculations for Part 1

$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

- moles of $\mathrm{MnO}_{4}^{-}=\underline{\text { molarity }(0.02 \mathrm{M}) \times \text { volume }(\mathrm{ml})}$ $1000(\mathrm{~mL} / \mathrm{L})$
- moles of $\mathrm{H}_{2} \mathrm{O}_{2}=$ moles of $\mathrm{MnO}_{4}^{-} \times \underline{5}$

2

Calculation(Con.)

- gram of $\mathrm{H}_{2} \mathrm{O}_{2}=$ moles of $\mathrm{H}_{2} \mathrm{O}_{2} \times 34.01$

$$
\left(\mathrm{MW} \text { of } \mathrm{H}_{2} \mathrm{O}_{2}\right)
$$

- $\% \mathrm{H}_{2} \mathrm{O}_{2}=$ gram of $\mathrm{H}_{2} \mathrm{O}_{2} \times 100 \%$ sample mass
- sample mass (gram) = weight of (flask + 20-22 drops of $\mathrm{H}_{2} \mathrm{O}_{2}$) - weight of flask

Calculations for Part 2

- $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}+\mathrm{I}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$
- moles of $\mathrm{I}_{2}=\underline{\text { molarity }(0.05 \mathrm{M}) \times \text { volume }(\mathrm{mL})}$ $1000(\mathrm{~mL} / \mathrm{L})$
- moles of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}=$ moles of I_{2}
- grams of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}=$ moles of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} \times 176.13$ (MW of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$)

Calculation(Con.)

- $\%_{6} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}=$ grams of $\mathrm{C}_{6} \mathrm{H}_{-9} \mathrm{O}_{6} \times 100 \%$ weight of sample
- weight of sample (gram)
$=\mathrm{W}_{\text {sample+weighing paper }}-\mathrm{W}_{\text {weighing paper }}$

